The Commutative Property

The **commutative property of addition** \((a + b = b + a) \) says that when two numbers are added, changing the order of the addends does not change the sum; for example, \(6 + 3 = 3 + 6 \).

Game Description and Materials

One-Two Switcheroo is a game for two players that uses the commutative property of addition to give students mental math practice adding whole numbers and positive fractions. Players match commutative pairs of cards (Switcheroo Pairs) to a common sum. **Game materials** include a Game Board and a set of cards. Each player needs up to ten tokens (such as coins) to use as markers. The **object of the game** is to collect more Switcheroo Pairs than the other player.

Game Board

The Game Board has 15 Sum Spots for Switcheroo Pairs and places for the draw pile and discards.

Cards

- There are **30 Game Cards**, two “matching” cards for each Switcheroo Pair.
- There are five **Chance Cards**. Chance Cards may be saved and used as needed. Playing a Chance Card constitutes a turn.
 - Two Chance Cards say, “Discard and pick.” Players use this card to discard an unwanted card from their hand and exchange it for the top card from the draw pile. Then, they discard the Chance Card.
 - Three Chance Cards say, “Take a card.” Players take any card (except a Chance Card) from their opponent, place it with their other cards in their play area, and discard the Chance Card. The opponent then picks a card from the draw pile to replace the one that was taken.

Versions

There are three addition versions of One-Two Switcheroo, all of which can be taught using the same Game Description and Play Instructions. Game boards and cards for each version are previewed on the pages following the Play Instructions.

- Addition: Facts to 10
- Addition: Facts to 18
- Addition: Positive Fractions*

*Please note that sums are not simplified or converted.
Getting Ready to Play

The dealer shuffles the cards, deals five cards to each player, and places the remaining cards face down to form a draw pile. Throughout the game, players’ cards remain face up so both players can see them. Players replace each card they use by drawing the top card from the draw pile. They should have five cards at the end of each turn.

Playing the Game

1. Players decide who takes the first turn. Player 1 places a card from his hand on a Sum Spot, saying aloud the correct addition statement:

 \[6 + 3 = 9\]

 “\(6 + 3 = 9\)”

2. Player 2 takes the next turn, following the same procedure as Player 1.

3. When a player has a card that will make a Switcheroo Pair, he places that card on the Game Board on top of the other card of the pair. Then, he places his marker on the pair of cards and says aloud the commutative statement:

 \[3 + 6 = 6 + 3\]

 “\(3 + 6 = 6 + 3\)” One-Two Switcheroo.”

4. Players alternate turns until the draw pile is gone. When this happens, players combine their cards (removing any Chance Cards), shuffle them, and make another draw pile. The player whose turn it was picks the top card and plays it to the board. Players alternate turns until the cards are gone.

5. The winner is the player with more Switcheroo Pairs.
ONE-TWO SWITCHEROO: Addition

Adding to 10
(used as examples in Play Instructions)

Adding to 18

Adding Fractions
Addition Blanks
(for teacher-generated versions)

ONE-TWO SWITCHEROO: Addition

Blank Game Board

Discards

1st card: Addition Statement

2nd card: Commutative Statement

One-Two Switcheroo!

Draw

Pile

Chance

Discard and pick

One-Two Switcheroo: Addition

Blank Cards

©Copyright 2012 • KP Mathematics

New ways of learning . . . new ways of thinking
ONE-TWO SWITCHEROO: Addition

Adding to 10

Adding to 18

Adding Positive Fractions
ONE-TWO SWITCHEROO: Adding to 10

Commutative Property of Addition

\[a + b = b + a \]

1st card: Addition Statement

\[a + b = c \]

2nd card: Commutative Statement

\[a + b = b + a \]

One-Two Switcheroo!
ONE-TWO SWITCHEROO: Adding to 10

Cards

<table>
<thead>
<tr>
<th>1+5</th>
<th>5+1</th>
<th>3+2</th>
<th>2+3</th>
<th>3+6</th>
<th>6+3</th>
</tr>
</thead>
<tbody>
<tr>
<td>5+4</td>
<td>4+5</td>
<td>2+5</td>
<td>4+3</td>
<td>3+4</td>
<td>3+6</td>
</tr>
<tr>
<td>4+6</td>
<td>5+2</td>
<td>3+6</td>
<td>4+2</td>
<td>2+4</td>
<td>2+6</td>
</tr>
<tr>
<td>6+4</td>
<td>7+0</td>
<td>9+1</td>
<td>3+7</td>
<td>2+4</td>
<td>2+6</td>
</tr>
<tr>
<td>9+0</td>
<td>0+9</td>
<td>1+9</td>
<td>7+3</td>
<td>3+7</td>
<td>6+2</td>
</tr>
</tbody>
</table>

CHANCE

- Take a card
- Discard and pick
- Discard and pick

© Copyright 2012 • KP Mathematics

New ways of learning ... new ways of thinking

GRADES K-5

Take a card
ONE-TWO SWITCHEROO: Adding to 18

Cards

<table>
<thead>
<tr>
<th>8 + 3</th>
<th>8 + 9</th>
<th>6 + 9</th>
<th>9 + 6</th>
<th>5 + 8</th>
<th>6 + 8</th>
<th>8 + 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 + 8</td>
<td>3 + 8</td>
<td>6 + 5</td>
<td>8 + 7</td>
<td>7 + 8</td>
<td>8 + 7</td>
<td>9 + 8</td>
</tr>
<tr>
<td>5 + 6</td>
<td>5 + 6</td>
<td>7 + 6</td>
<td>7 + 6</td>
<td>7 + 4</td>
<td>9 + 4</td>
<td>6 + 4</td>
</tr>
<tr>
<td>9 + 8</td>
<td>9 + 8</td>
<td>6 + 7</td>
<td>4 + 7</td>
<td>9 + 2</td>
<td>2 + 9</td>
<td>4 + 8</td>
</tr>
<tr>
<td>8 + 9</td>
<td>8 + 9</td>
<td>5 + 9</td>
<td>9 + 4</td>
<td>7 + 9</td>
<td>4 + 8</td>
<td>8 + 4</td>
</tr>
</tbody>
</table>

CHANCE
- Discard and pick

ONE-TWO SWITCHEROO
- Adding to 18

©Copyright 2017 • KP Mathematics

New ways of learning ... new ways of thinking
1st card: Addition Statement
\[a + b = c \]

2nd card: Commutative Statement
\[a + b = b + a \]

One-Two Switcheroo!
ONE-TWO SWITCHEROO: Adding Fractions Cards

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[\frac{1}{2} + \frac{3}{4}]</td>
<td>[\frac{3}{4} + \frac{1}{2}]</td>
<td>[1\frac{1}{2} + \frac{1}{4}]</td>
<td>[\frac{1}{4} + 1\frac{1}{2}]</td>
<td>[\frac{1}{5} + 1\frac{3}{5}]</td>
<td>[1\frac{3}{5} + \frac{1}{5}]</td>
</tr>
<tr>
<td>[\frac{4}{5} + \frac{3}{5}]</td>
<td>[\frac{3}{5} + \frac{4}{5}]</td>
<td>[2 + \frac{5}{7}]</td>
<td>[\frac{5}{7} + 2]</td>
<td>[\frac{63}{10} + \frac{3}{10}]</td>
<td>[\frac{3}{10} + \frac{63}{100}]</td>
</tr>
<tr>
<td>[\frac{3}{8} + 1\frac{1}{4}]</td>
<td>[1\frac{1}{8} + \frac{4}{8}]</td>
<td>[1\frac{3}{4} + \frac{3}{4}]</td>
<td>[\frac{3}{4} + \frac{1}{4}]</td>
<td>[\frac{1}{8} + 2]</td>
<td>[\frac{1}{2} + \frac{1}{8}]</td>
</tr>
<tr>
<td>[2\frac{1}{2} + 3]</td>
<td>[3 + 2\frac{1}{2}]</td>
<td>[\frac{1}{10} + 3]</td>
<td>[\frac{3}{5} + \frac{1}{10}]</td>
<td>[1\frac{1}{3} + \frac{1}{3}]</td>
<td>[\frac{1}{3} + 1\frac{1}{3}]</td>
</tr>
<tr>
<td>[\frac{3}{2} + \frac{2}{6}]</td>
<td>[\frac{2}{6} + \frac{3}{2}]</td>
<td>[\frac{1}{3} + \frac{5}{6}]</td>
<td>[\frac{5}{6} + \frac{1}{3}]</td>
<td>[\frac{2}{4} + \frac{4}{2}]</td>
<td>[\frac{4}{2} + \frac{2}{4}]</td>
</tr>
</tbody>
</table>

CHANCE: Discard and pick

CHANCE: Take a card

© Copyright 2012 • KP Mathematics

New ways of learning . . . new ways of thinking
Commulative Property of Addition

\[a + b = b + a \]
One-Two Switcheroo: Addition

Blank Cards

Take a card

Take a card

Take a card

Discard and pick

Discard and pick

Discard and pick

©Copyright 2012 • KP Mathematics